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A mechanical model of a particle immersed in a heat bath is studied, in which a
distinguished particle interacts via linear springs with a collection of n particles
with variable masses and random initial conditions; the jth particle oscillates
with frequency jp, where p is a parameter. For p > 1/2 the sequence of random
processes that describe the trajectory of the distinguished particle tends almost
surely, as n Q ., to the solution of an integro-differential equation with a
random driving term; the mean convergence rate is 1/np − 1/2. We further inves-
tigate whether the motion of the distinguished particle can be well approximated
by an integration scheme—the symplectic Euler scheme—when the product of
time step h and highest frequency np is of order 1, that is, when high frequencies
are underresolved. For 1/2 < p < 1 the numerical solution is found to converge
to the exact solution at a reduced rate of |log h| h2 − 1/p. These results shed light
on existing numerical data.

KEY WORDS: Heat bath; generalized Langevin equation; Volterra equation;
stiff oscillatory systems; symplectic Euler scheme; order reduction.

1. INTRODUCTION

We study a simple model of a particle in a heat bath. The heat bath con-
sists of a collection of particles that interact with the distinguished particle
through springs. Such models were introduced back in the 1960’s by Ford
et al. (1) in order to study the mechanical foundations of Brownian motion
and stochastic dynamics. There exists a significant amount of related
literature both for classical and quantum systems (see, e.g., refs. 2–5). In



recent years, there has been a renewed interest in systems of this type in the
context of the numerical analysis of large oscillatory systems with broad
frequency spectra, (6–8) and the approximation of stochastic differential
equations. (9) Kast (10) considered systems of coupled oscillators in the
context of optimal prediction theory. (11, 12)

We examine a one-parameter family of models that are a variant of
the Ford–Kac–Mazur model. A collection of n particles of different masses
interacts with a distinguished particle through linear springs of unit
strength. A parameter, p, determines the mass distribution: the jth particle
has mass mj=j−2p. Thus, if the distinguished particle was held fixed, it
would be the anchor point of n independent oscillators with frequencies
wj=jp. The model studied by Stuart and Warren (6) is a particular instance
with p=1. It is a very special case as all frequencies are rationally related,
resulting in periodic solutions. The generalization to p ] 1 is interesting
since the motion of the distinguished particle is governed by nonlocal
memory effects (see later).

Following the standard approach in statistical mechanics it is assumed
that all the degrees of freedom, except for the ones under explicit consid-
eration, have random initial data. The system is assumed to be in thermo-
dynamical equilibrium, i.e., the random initial data are distributed accord-
ing to the Gibbs measure associated with the Hamiltonian of the system. In
the present case, the variables of interest are the position, Qn(t), and the
momentum, Pn(t), of the distinguished particle; the subscript n refers to the
number of particles in the heat bath. Under these assumptions, Qn(t) and
Pn(t) are governed by a generalized Langevin equation, which is an integro-
differential equation with random forcing; the randomness stems from the
postulated random initial data.

We study the ‘‘thermodynamics limit,’’ n Q ., and find that for p >
1/2 the sequence of random trajectories, Qn(t), converges almost surely
to a limiting processes, Q(t); the convergence is uniform on any bounded
time interval [0, T]. We estimate the discrepancy between Qn and Q in
L2(W; L2[0, T]) and L1(W; C[0, T]), where W is the probability sample
space; in both cases the mean convergence rate is 1/np − 1/2. Our results
generalize those of Stuart and Warren, (6) who obtain mean square conver-
gence with rate 1/n1/2 for p=1.

We further investigate the numerical approximation of this model in
an underresolved setting, when the product of the time step, h, and the
highest frequency, np, is of order 1. The question is whether the trajectory
of the distinguished particle can be accurately predicted without properly
resolving a fraction of the spectrum. We analyze the symplectic Euler
scheme, which has also been considered in refs. 6 and 8. In the limit h Q 0,
n Q ., nph [ 1, the numerical solution converges to Qn. For 1/2 < p < 1
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the convergence rate is |log h| h2 − 1/p, which is less than the convergence rate
of the symplectic Euler scheme for non-stiff problems. These results are in
agreement with numerical data in ref. 7.

To facilitate the reading of this long and technical paper, we have
organized it in the following manner: We start with a presentation of the
model and the computational scheme (Sections 2–6). Both continuous and
discrete systems are brought into an integral form, which is the starting
point for our asymptotic analysis. Our main results are summarized in
Section 7; proofs follow in Sections 8–16. Numerical results are presented
in Section 17, followed by a discussion in Section 18.

2. THE MODEL

We consider a family of mechanical models that describe the motion
of a particle immersed in a heat bath. The heat bath is modeled by a large
collection of particles that interact with the distinguished particle via linear
springs. Let Qn, Pn denote the position and momentum of the distinguished
particle, and q=(q1, q2,..., qn), p=(p1, p2,..., pn) denote the vectors of
positions and momenta of a collection of n particles that constitute the heat
bath. All motions are assumed to take place in one space dimension. The
Hamiltonian of the system is

H(Qn, Pn, q, p)=
1
2

(P2
n+Q2

n)+
1
2

C
n

j=1

5p2
j

mj
+kj(qj − Qn)26 (1)

where mj is the mass of the jth particle, and kj is the stiffness of the spring
that connects the jth particle to the distinguished particle. In this paper we
consider a continuous family of models where the mass distribution is
mj=1/j2p, j=1, 2,..., n, and where all the springs are of equal strength,
kj=1; the parameter p plays an important role in the limiting behavior of
this system as n Q .. This family of models is a variant of the model
introduced by Ford et al., (1, 13) and is closely related to the models recently
studied by Stuart and Warren (6) and Cano and Stuart. (8)

The Hamilton equations of motion are

˛ Q̇n=Pn

Ṗn=−Qn+;n
j=1 (qj − Qn)

˛ q̇j=j2ppj

ṗj=−(qj − Qn)
(2)

complemented by initial conditions, Qn(0)=Q0, Pn(0)=P0, qj(0), and
pj(0). The assumption is that the initial conditions of the heat bath
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variables are random, with a joint probability measure, mn, given by the
equilibrium Gibbs distribution,

mn(dq × dp)=Z−1e−bH(Q0, P0, q, p) dq dp

where Z is a normalization constant and b is the inverse temperature,
which without loss of generality will be taken to be 1. For H given by (1)
the measure mn is Gaussian and satisfies

E[qj − Q0]=E[pj]=0

E[(qj − Q0)2]=E[j2pp2
j ]=1

(3)

where E[ · ] denotes expectation with respect to mn. Thus, qj(0)=Q0+tj

and pj(0)=j−pgj, where tj and gj are independent identically-distributed
random variables drawn from a normal distribution N(0, 1). Our statisti-
cal setting for the initial conditions differs slightly from the one used in
ref. 6, where qj(0), pj(0) are assumed to be distributed independently of
Q0, P0.

Equation (3) suggests the following change of variables:

aj=(qj − Qn), bj=jppj

leading to rescaled equations of motion:

˛ Q̇n=Pn

Ṗn=−Qn+;n
j=1 aj

˛ ȧj=jpbj − Pn

ḃj=−jpaj

(4)

with initial conditions aj(0)=tj and bj(0)=gj.

3. GENERALIZED LANGEVIN EQUATION

The model equations (4) are sufficiently simple for the aj, bj equations
to be integrated explicitly by standard methods:

aj(t)=tj cos(jpt)+gj sin(jpt) − F
t

0
cos[jp(t − s)] Pn(s) ds

bj(t)=−tj sin(jpt)+gj cos(jpt)+F
t

0
sin[jp(t − s)] Pn(s) ds

(5)

Substituting aj(t) back into the Ṗn equation in (4) we obtain a closed set of
equations for the motion of the distinguished particle:
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Q̇n=Pn

Ṗn=−Qn − F
t

0
on(t − s) Pn(s) ds+gn(t)

(6)

where

on(t)= C
n

j=1
cos(jpt)

and

gn(t)= C
n

j=1
[tj cos(jpt)+gj sin(jpt)]

Equation (6) is a projection of the (2n+2)-dimensional system (4)
onto the two-dimensional subspace (Qn, Pn); it is an inhomogeneous
integro-differential system of equations that describes the rate of change of
(Qn, Pn) as function of their past and present values. The history depen-
dence is encapsulated by the memory kernel, on(t). The function gn(t) is a
forcing that depends on the initial values, tj and gj, of the integrated
variables. In the current setting, gn(t) is a random function whose expecta-
tion value is identically zero, and whose autocorrelation function is given
by

E[gn(t) gn(0)]= C
n

j=1
cos(jpt)=on(t)

which is known as a fluctuation-dissipation relation. Equation (6) is an
instance of the Mori–Zwanzig projection formalism, (12, 14, 15) and is also
known as a generalized Langevin equation.

For p=1 the memory kernel tends, as n Q ., to the Fourier series
of a 2p-periodic delta function, whereas gn(t) tends, for 0 [ t < p, to the
Fourier representation of white noise. Stuart and Warren (6) showed that
Qn(t) converges in the mean square on [0, p] to the solution of the
stochastic differential equation,

Q̇=P

Ṗ=−Q −
p

2
P+Ẇ

where Ẇ(t) is white noise.
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4. VOLTERRA EQUATION

Equation (6) can be transformed into an integral equation of Volterra
type, which is a more convenient starting point for asymptotic analysis. We
first write (6) as a second-order equation for Qn(t),

Q̈n(t)=−Qn(t) − F
t

0
on(t − s) Q̇n(s) ds+gn(t)

and then integrate it from 0 to t, integrating by parts the memory term,

Q̇n(t)=P0 − Q0t − Q0Kn(t)

− F
t

0
[1+on(t − s)] Qn(s) ds+F

t

0
gn(s) ds

where

Kn(t)=−F
t

0
[1+on(s)] ds=−t − C

n

j=1

sin(jpt)
jp (7)

A second integration from 0 to t yields a Volterra convolution equation,

Qn(t)=Fn(t)+F
t

0
Kn(t − s) Qn(s) ds (8)

with kernel Kn and forcing

Fn(t)=Q0+P0t+Q0 C
n

j=1

1 − cos(jpt)
j2p

+ C
n

j=1
tj

1 − cos(jpt)
j2p + C

n

j=1
gj
5 t

jp −
sin(jpt)

j2p
6

(9)

An equation for Pn(t) is obtained by differentiating (8):

Pn(t)=fn(t)+F
t

0
Kn(t − s) Pn(s) ds (10)
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where

fn(t)=Ḟn(t)+Q0Kn(t)

=P0 − tQ0+ C
n

j=1
tj

sin(jpt)
jp + C

n

j=1
gj

1 − cos(jpt)
jp

(11)

Note that the equation that governs Qn(t) differs from the equation that
governs Pn(t) only in the forcing.

5. SYMPLECTIC EULER SCHEME

From a computational point of view the equations of motion (2) form
a stiff oscillatory system due to the large ratio between the highest
frequency, which is of order np, and the lowest frequency, which is of order 1.
The question addressed in refs. 6–8 is whether the motion of the distin-
guished particle can be accurately computed when the high frequencies are
underresolved, i.e., when the time step h is small relative to the characteris-
tic time scale of the distinguished particle, but the product nph is not small.
Cano and Stuart (8) conducted numerical experiments for a variety of
systems using several numerical methods; their results indicate that con-
vergence to the right solution is sensitive both to the system and to the
numerical method. In several cases, the numerical solution was found
to converge to the wrong limit. Their observation is that it is harder to
approximate systems with local damping, i.e., when the memory kernel has
a delta-singularity.

In this paper we analyze underresolved computations for the symplectic
Euler scheme (ref. 16, p. 312). The equations are solved on a finite time
interval [0, T]. Let h be a fixed step size, such that Nh=T, with N the
total number of steps; tk=kh denotes the time at the kth step. The discrete
variables are denoted by Qk

n % Qn(tk), Pk
n % Pn(tk), qk

j % qj(tk) and pk
j %

pj(tk). The size of the heat bath, n, is chosen such to keep the product nph
approximately fixed: n=N(t/h)1/pM, with t [ 1.

The symplectic Euler scheme for (2) is

Qk+1
n =Qk

n+hPk+1
n

Pk+1
n =Pk

n − hQk
n+h C

n

j=1
(qk

j − Qk
n)

qk+1
j =qk

j +hj2ppk+1
j

pk+1
j =pk

j − h(qk
j − Qk

n)

(12)
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Changing variables into ak
j =qk

j − Qk
n and bk

j =jppk
j , the discrete analog of

(4) is

Qk+1
n =Qk

n+hPk+1
n

Pk+1
n =Pk

n − hQk
n+h C

n

j=1
ak

j

ak+1
j =ak

j +hjpbk+1
j − (Qk+1

n − Qk
n)

bk+1
j =bk

j − hjpak
j

(13)

where Q0
n=Q0, P0

n=P0, a0
j =tj, and b0

j =gj, with tj, gj ’ N(0, 1).
Like in the continuous case, the equations for ak

j , bk
j can be solved

explicitly; the derivation is presented in Appendix A. The solution, which is
the discrete analog of (5), is

Rak
j

bk
j

S=
1

cos(1
2fj)

1cos[(k+1
2) fj] sin kfj

− sin kfj cos[(k − 1
2) fj]

21tj

gj

2

− C
k

m=1

1
cos(1

2fj)
1cos[(k − m+1

2) fj] sin[(k − m) fj]
− sin[(k − m) fj] cos[(k − m − 1

2) fj]
2

×1Qm
n − Qm − 1

n

0
2 (14)

where

fj=cos−1(1 − 1
2j2ph2)

Our formulas can be simplified by using the following identities:

sin(kfj)
cos(1

2fj)
=jph Uk − 1(xj)

cos[(k+1
2) fj]

cos(1
2fj)

=Uk(xj) − Uk − 1(xj)

(15)

where the Uk are the Chebyshev polynomials of the second kind (see
Appendices A and B) and

xj=cos fj=1 − 1
2j2ph2

Substituting the ak
j component of (14) along with the identities (15)

into the Pn-equation in (13), we obtain a closed, second-order difference
equation for Qk

n :
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Qk+1
n − 2Qk

n+Qk − 1
n

h2 = − Qk
n+ C

n

j=1
tj[Uk(xj) − Uk − 1(xj)]+h C

n

j=1
gj jpUk − 1(xj)

− C
n

j=1
C
k

m=1
[Uk − m(xj) − Uk − m − 1(xj)](Qm

n − Qm − 1
n )

(16)

where we adopt the convention U−1(x)=0. Equation (16) is the discrete
analog of (6); it is a two-step (leap-frog) method. The two initial conditions
are deduced from (13):

Q0
n=Q0

Q1
n=Q0+hP0 − h2Q0+h2 C

n

j=1
tj

(17)

6. DISCRETE VOLTERRA EQUATION

In analogy with the continuous case, we convert the (discrete) integro-
differential equation (16) into a (discrete) integral equation. The procedure
is straightforward and parallel to its continuous counterpart: it involves
two summations over the discrete time index and summation by parts; the
derivation is presented in Appendix C.

The resulting equation is

Qk
n=Fk

n+h C
k − 1

a=0
Kk − a

n Qa

n (18)

k=0, 1,..., N, where the discrete kernel is

Kk
n=−tk − h C

n

j=1
Uk − 1(xj) (19)

where tk=kh, xj=1 − 1
2j2ph2, and we recall our convention that U−1(x)=0,

thus K0
n=0. The discrete forcing is

Fk
n=Q0+P0tk+Q0 C

n

j=1

1 − [Uk(xj) − Uk − 1(xj)]
j2p

+ C
n

j=1
tj

1 − [Uk(xj) − Uk − 1(xj)]
j2p + C

n

j=1
gj
5tk

jp − h
Uk − 1(xj)

jp
6 (20)
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Equations (18), (19), and (20) are the discrete analogs of (8), (7), and (9),
respectively.

7. SUMMARY OF MAIN RESULTS

The solutions Qn, Pn of Eq. (8) are random functions, whereas the
solutions Qn, Pn of Eq. (18) are N-dimensional random vectors. In both
cases, the randomness stems from the random initial data tj, gj, j=1,
2,..., n, which are independent Gaussian variables. Recall that N and n are
related as n=N(t/h)1/pM, t [ 1, and N=T/h.

To analyze the limit n, N Q ., h Q 0 we have to construct a probabil-
ity space with respect to which all random functions are defined. Consider
two infinite sequences of independent Gaussian variables tj, gj, j=1, 2,...
defined on some probability space (W, F, P). For all n, Qn and Pn are
measurable mappings from W to some space of functions defined on [0, T];
similarly, Qn, Pn are measurable mappings from W to RN.

To formulate our error bounds we introduce the following spaces of
functions:

1. Spaces of functions defined on [0, T], C[0, T] and Lp[0, T], with
the standard corresponding norms. We will use the abbreviate notations C
and Lp, respectively, but one should always keep in mind that the time
interval is finite.

2. Spaces of random functions, L1(W; C[0, T]) and L2(W; L2[0, T]),
with norms

||Q||L1(W; C[0, T])=E[ sup
0 [ t [ T

|Q(t)|]

and

||Q||L2(W; L2[0, T])=1E 5F
T

0
Q2(t) dt62

1/2

(21)

Here, we shall use the abbreviate notations, L1(W; C) and L2(W; L2),
respectively.

3. The space of N-dimensional (non-random) vectors, L1
h , N=T/h,

with norm

||K||L1
h
=h C

N − 1

k=0
|Kk|
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4. The space of N-dimensional random vectors, L2(W; L2
h), N=T/h,

with norm

||Q||L2(W; L2
h)=1E 5h C

N − 1

k=0
(Qk)2621/2

(22)

To relate the finite dimensional space L2(W; L2
h) to the infinite dimensional

space L2(W; L2) we introduce two mapping operators: a restriction operator
rh : L2(W; L2) W L2(W; L2

h) and a prolongation operator ph : L2(W; L2
h) W

L2(W; L2). Specifically, rh maps random functions Q ¥ L2(W; L2) into
random vectors by averaging over intervals of size h,

(rhQ)k=
1
h

F
tk+1

tk

Q(s) ds

whereas ph maps random vectors Q ¥ L2(W; L2
h) into piecewise-constant

random functions,

(phQ)(t)= C
N − 1

k=0
Qkqk(t)

where qk(t) is the indicator function of the interval [tk, tk+1). These
approximations are first-order accurate, which is the order of the symplectic
Euler scheme.

A sequence Qn ¥ L2(W; L2
h) is said to converge discretely to Q ¥

L2(W; L2) if

lim
h Q 0

||Qn − rhQ||L2(W; L2
h)=0

and it is said to converge globally if

lim
h Q 0

||phQn − Q||L2(W; L2)=0

One can show that discrete and global convergence are equivalent in the
current setting.

We can now formulate our main results:

Theorem 7.1. Let p > 1/2 and T > 0. The sequence Qn converges
almost surely to a limit Q, and there exists a constant C > 0 that depends
on p and T such that
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||Q − Qn ||L1(W; C) [
C

np − 1/2 ,

||Q − Qn ||L2(W; L2) [
C

np − 1/2

Furthermore, the numerical solution Qn converges (discretely) to Qn. For
the range of parameters 1/2 < p < 1 there exists a constant C > 0 such that

||rhQn − Qn ||L2(W; L2
h) [ C |log h| h2 − 1/p

Above and below the symbol C is used repeatedly to denote positive
constants that depend on the parameters p, T (and possibly Q0 and P0), but
are independent of n and h. The proof of Theorem 7.1 is based on a
sequence of auxiliary results which are listed in the following proposition:

Proposition 7.1. Let p > 1/2 and T > 0. Then:

1. Kn Q K in L1 with

||K − Kn ||L1 [ ˛C
log n
n2p − 1

1
2

< p < 1

C
np − 1/2 p \ 1

(Proof given in Section 8.)

2. Let Rn and R be the resolvent kernels of Kn and K, respectively:

Rn=Kn+Kn f Rn

R=K+K f R

Then, for n sufficiently large

||R − Rn ||L1 [
(1+||R||L1) en

1 − en

where

en=(1+||R||L1) ||K − Kn ||L1

(Proof given in Section 9.)
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3. Fn Q F almost surely in C with

||F − Fn ||L1(W; C) [
C

np − 1/2

||F − Fn ||L2(W; L2) [
C

np − 1/2

fn Q f in L2(W; L2) with

||f − fn ||L2(W; L2) [
C

np − 1/2

(Proofs given in Section 10.)

4. Qn Q Q almost surely in Lp with

||Q − Qn ||L1(W; C) [
1+||R||L1

1 − en
[||F − Fn ||L1(W; C)+en ||F||L1(W; C)]

||Q − Qn ||L2(W; L2) [
1+||R||L1

1 − en
[||F − Fn ||L2(W; L2)+en ||F||L2(W; L2)]

Pn Q P in L2(W; L2) with

||P − Pn ||L2(W; L2) [
1+||R||L1

1 − en
[||f − fn ||L2(W; L2)+en ||f||L2(W; L2)]

(Proofs given in Section 11.)

5. The discrepancy between the exact n-particle solution, Qn, and its
underresolved numerical approximation, Qn, is given by an expression of
the form:

rhQn − Qn=L−1
n (y1+y2)

where Ln is a linear operator defined by

(LnQn)k=Qk
n − h C

k − 1

a=0
Kk − a

n Qa

n

and y1 and y2 are truncation errors associated with the approximation of
the kernel and the forcing, respectively. (Details presented in Section 13.)

6. For N, n Q ., h Q 0, such that nph [ 1, the approximation (18) is
stable, i.e., ||L−1

n || is uniformly bounded. (Proof given in Section 14.)
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7. For 1/2 < p < 1,

||y1 ||L2(W; L2) [ C |log h| h2 − 1/p

(Proof given in Section 15.)

8. For 1/2 < p < 1,

||y2 ||L2(W; L2) [ Ch (4/3)(1 − 1/4p)

(Proof given in Section 16.)

8. CONVERGENCE OF THE KERNEL

In this section we analyze the kernels Kn, given by (7), and show that
they form a convergent sequence in L1; we denote the limit by K. The
convergence rate depends on p; different techniques are used for each of
the ranges 1/2 < p < 1, p=1, and p > 1.

8.1. Case I: p >1

Proposition 8.1. Let p > 1 and T > 0. Then,

||K − Kn ||L1 [
C

np − 1/2

Proof. We shall show that Kn is a Cauchy sequence in L2, which by
Cauchy–Schwarz, ||K||L1 [ `T ||K||L2, implies convergence in L1.

Let m < n, then

||Kn − Km ||2
L2=F

T

0

5 C
n

j=m+1

sin(jpt)
jp

65 C
n

a=m+1

sin(a
pt)

a
p

6 dt

= C
n

j=m+1

1
j2p

5T
2

−
1

4jp sin(2jpT)6

+ C
n

j=m+1
C
n

a=j+1

5sin[(jp − a
p) T]

jp − a
p −

sin[(jp+a
p) T]

jp+a
p

6

[
1
2

C
n

j=m+1

1
j2p

1T+
1
4
2+ C

n

j=m+1
C
n

a=j+1

1
jp

a
p
1 1

a
p − jp+

1
2jp

2

where we have split j=a and j ] a terms, bounded the sine functions by 1,
and used 1/jp [ 1/2.
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The first sum can be bounded by an integral:

1
2

C
n

j=m+1

1
j2p

1T+
1
4
2 [

1
2
1T+

1
4
2 F

.

m

dx
x2p [

C1

m2p − 1

where

C1=
T+1/4

2(2p − 1)

The double sum is treated as follows: first,

C
n

j=m+1
C
n

a=j+1

1
jp

a
p

1
a

p − jp= C
n

j=m+1

1
jp
1 C

min(n, 2j)

a=j+1

1
a

p

1
a

p − jp+ C
n

a=2j+1

1
a

2p

1
1 − (j/a)p

2

[ C
n

j=m+1

1
jp
1 C

j

n=1

1
(j+n)p

1
(j+n)p − jp+2 C

n

a=2j+1

1
a

2p
2

[ C
n

j=m+1

1
jp
1 1

j2p C
j

n=1

1
(1+n/j)p − 1

+
2

2p − 1
1

(2j)2p − 1
2

[ C
n

j=m+1

1
j3p C

j

n=1

j
pn

+
4

4p(2p − 1)
C
n

j=m+1

1
j3p − 1

[
1
p

C
n

j=m+1

1+log j
j3p − 1 +

4
4p(2p − 1)(3p − 2)

1
m3p − 2

[
(3p − 2) log m+(3p − 1)

p(3p − 2)2

1
m3p − 2

+
4

4p(2p − 1)(3p − 2)
1

m3p − 2

[
C2

m2p − 1

where C2 can be chosen, for example, as

C2=
6p − 3

p(3p − 2)2+
4

4p(2p − 1)(3p − 2)

Finally,

C
n

j=m+1
C
n

a=j+1

1
2j2p

a
p [

1
2(p − 1)

C
n

j=m+1

1
j3p − 1 [

C3

m3p − 2
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where

C3=
1

2(p − 1)(3p − 2)

Taking C=`C1+C2+C3 we obtain the desired result. L

8.2. Case II: p=1

Proposition 8.2. Let p=1, then

||K − Kn ||L1 [
C

n1/2

Proof. We use again the L2 … L1 embedding: ||K||L1 [ `T ||K||L2.
For p=1 the functions sin(jpt) are Fourier basis functions. Let M be

an integer such that

2p(M − 1) < T [ 2pM

then by the orthogonality of the Fourier basis,

||Kn − Km ||2
L2=F

T

0

: C
n

j=m+1

sin(jt)
j

:2 dt

[ F
2pM

0

: C
n

j=m+1

sin(jt)
j

:2 dt

=
1
2

(2pM) C
n

j=m+1

1
j2

[
T+2p

2m

Thus,

||K − Kn ||L1 [ =T(T+2p)
2

1
n1/2 L
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8.3. Case III: 1/2<p<1

This is the most delicate case as Kn(t) is not uniformly bounded.
Lemmas 8.1–8.5 below provide pointwise estimates for Kn(t), which are
then used to obtain norm estimates. To simplify notations we write

Kn(t)=−t − C
n

j=1
wt(j)

where

wt(x)=
sin(xpt)

xp

Lemma 8.1. Let 1/2 < p < 1 and 0 [ t [ T, then for x \ 1,

|w (k)
t (x)| [

C1(k, p, t)
x (k − 1)(1 − p)+1 , k=1, 2,... (23)

where

C1(k, p, t)=(2k)k max(1, pktk)

Proof. We examine the first two derivatives of wt(x):

w −

t(x)=(−p) x−p − 1 sin(xpt)+(pt) x−1 cos(xpt)

w'

t (x)=(−p)(−p − 1) x−p − 2 sin(xpt) − p(pt) x−2 cos(xpt)

− (pt) x−2 cos(xpt) − (pt)2 x−2+p sin(xpt),

and observe that the kth derivative is a sum of 2k terms, each consisting
of a prefactor of the form (−p)(−p − 1) · · · (−p − q) × (pt) r, where q, r [ k,
times x to some power, the largest possible power being (k − 1)(p − 1) − 1,
times either sin(xpt) or cos(xpt). The bound (23) is obtained if one replace
each of the 2k terms by its largest possible value. L

Lemma 8.2. Let 1/2 < p < 1 and 0 [ t [ T, and set r=K p
2(1 − p)L.

Then,

: C
n

j=m+1

sin(jpt)
jp

: [ :F n

m

sin(xpt)
xp dx :+C2(p, t)

m2p − 1
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where

C2(p, t)=1+2 C
r − 1

k=1

|B2k |
(2k)!

C1(2k − 1, p, t)+
|B2r |
(2r)!

C1(2r, p, t)
(2r − 1)(1 − p)

with B2k the Bernoulli numbers.

Proof. The proof is based on the Euler–Maclaurin summation for-
mula: (17)

C
n

j=m+1
wt(j)=F

n

m
wt(x) dx+

1
2

[wt(n) − wt(m)]

+ C
r − 1

k=1

B2k

(2k)!
[w (2k − 1)

t (n) − w (2k − 1)
t (m)]

−
B2r

(2r)!
C
n

j=m+1
w (2r)

t (j+hj)

where 0 < hj < 1. Substituting wt(x)=sin(xpt)/xp, and using the bounds
established in Lemma 8.1, we get

: C
n

j=m+1

sin(jpt)
jp

: [ :F n

m

sin(xpt)
xp dx :+ 1

mp

+ C
r − 1

k=1

|B2k |
(2k)!

C1(2k − 1, p, t)
2

m (2k − 2)(1 − p)+1

+
|B2r |
(2r)!

C1(2r, p, t) C
n

j=m+1

1
j (2r − 1)(1 − p)+1

For 1/2 < p < 1 we have 2p − 1 < p, hence 1/mp < 1/m2p − 1. Similarly,
2p − 1 < (2k − 2)(1 − p)+1 for k=1, 2,..., r − 1, hence, 1/m(2k − 2)(1 − p)+1 <
1/m2p − 1. For the last term, we can bound the summation by an integral,
extending the upper limit of integration to infinity. This yields a term pro-
portional to 1/m(2r − 1)(1 − p), which by our choice of r can be bounded by
1/m2p − 1. This completes the proof. L

Lemma 8.3. Let 0 < a < b and 0 [ c [ 1. Then

:F b

a

sin y
yc

dy : [ 2
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Proof. We first argue that for all a, b,

:F b

a

sin y
yc

dy : [ F
p

0

sin y
yc

dy — g(c)

the reason being that in each of the intervals [0, p], [p, 2p], etc., the
integrand is the product of an oscillatory function, sin y, and a positive,
decreasing function, y−c. As a result, >x

0 y−c sin y dy reaches local extrema
at the points x=kp, the value of each extremum being between the values
of the two preceding ones. The largest value is obtained when the range of
integration coincides with the first interval, [0, p].

We then consider the function g(c). It is convex for 0 [ c [ 1, hence
g(c) [ (1 − c) g(0)+cg(1). It only remains to verify that g(0)=2 and
g(1)=1.85 < 2. L

Lemma 8.4. Let 0 < a < b and 0 [ c [ 1. Then

:F b

a

sin y
yc

dy : [ 2
ac

Proof. Integrating by parts,

F
b

a

sin y
yc

dy=F
b

a

(1 − cos y)Œ

yc
dy

=
1 − cos b

bc
−

1 − cos a
ac

+c F
b

a
y−c − 1(1 − cos y) dy

from which readily follows

1 − cos b
bc

−
1 − cos a

ac
[ F

b

a

sin y
yc

dy [
1+cos a

ac
−

1+cos b
bc

and

−
2
ac

[ F
b

a

sin y
yc

dy [
2
ac

L

Lemma 8.5. Let 1/2 < p < 1, then

:F n

m

sin(xpt)
xp dx : [ 2

p
min 1 1

t1/p − 1 ,
1

t m2p − 1
2
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Proof. By a change of variables, y=xpt:

F
n

m

sin(xpt)
xp dx=

1
pt1/p − 1 F

npt

mpt

sin y
y2 − 1/p dy

To complete the proof we use Lemmas 8.3 and 8.4, with a=mpt, b=npt,
and c=2 − 1/p. L

Combining together Lemmas 8.1–8.5 we have the following result:

Corollary 8.1. Let 1/2 < p < 1 and 0 [ t [ T, then

|Kn(t) − Km(t)| [
C2(p, t)
m2p − 1 +

2
p

min 1 1
t1/p − 1 ,

1
t m2p − 1

2 (24)

From this pointwise estimate follows the L1-convergence of Kn:

Proposition 8.3. Let 1/2 < p < 1, then that

||K − Kn ||L1=C
log n
n2p − 1

Proof. Let m < n; integrating inequality (24), noting that C2(p, t) is
monotonically increasing in t, and that the crossover of the minimum
occurs at t=1/mp, we have

||Kn − Km ||L1 [
C2(p, T) T

m2p − 1 +
2
p

F
1/mp

0

dt
t1/p − 1+

2
p

F
T

1/mp

dt
tm2p − 1

=
C2(p, T) T

m2p − 1 +
2
p

1
(2 − 1/p) m2p − 1+

2
pm2p − 1 log mpT

=C
log m
m2p − 1

where

C=C2(p, T) T+
2

p(2 − 1/p)
+

2(1+log T)
p

L
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In the following we will also need an estimate for the rate of conver-
gence of the integral of Kn in L2. We define

Kn(t)=F
t

0
Kn(s) ds=−

1
2

t2 − C
n

j=1

1 − cos(jpt)
j2p

and correspondingly, K(t)=> t
0 K(s) ds.

Proposition 8.4. Let p > 1/2, then

||K−Kn ||L2 [
C

n2p − 1

Proof. Let n > m, then

|Kn(t) −Km(t)|=: C
n

j=m+1

1 − cos(jpt)
j2p

: [ 2 C
n

j=m+1

1
j2p [

2
2p − 1

·
1

m2p − 1

Thus,

||K−Kn ||L2 [
2 `T

2p − 1
·

1
n2p − 1 L

9. THE RESOLVENT KERNEL

Having established the convergence of Kn, we study next the conver-
gence of the corresponding resolvent kernels. Some of the results in this
section can be found, e.g., in ref. 18. It is convenient to introduce a short-
hand notation for convolutions. Let K ¥ L1 and Q ¥ Lp, 1 [ p [ ., then we
define

(K f Q)(t)=F
t

0
K(t − s) Q(s) ds

This convolution is commutative and associative. Young’s inequality (see
e.g., ref. 18, p. 39) states that K f Q ¥ Lp and

||K f Q||Lp [ ||K||L1 ||Q||Lp (25)
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A similar inequality holds for Q ¥ C with the corresponding maximum-
norm. Note also that

(1[0, T] f Q)(t)=F
t

0
Q(s) ds

Proposition 9.1. Let K ¥ L1. Then the equation

R=K+K f R (26)

has a unique solution R ¥ L1, called the resolvent of K.

Proof. We first prove uniqueness. Suppose that R, S ¥ L1 both
satisfy

R=K+K f R

S=K+K f S

Then

R − S=(K+K f R) − (K+K f S)

=K f R − K f S

=(S − K f S) f R − (R − K f R) f S

=0

To prove existence we first assume that ||K||L1 < 1. In this case we
construct the resolvent by successive approximations:

R (0)=K

R (m)=K+K f R (m − 1)

The general term can be written as

R (m)= C
m+1

j=1
Kgj

where Kgj denotes a j-fold convolution of K by itself. By Young’s inequal-
ity (25), ||Kgj||L1 [ ||K|| j

L1, thus R (m) is a Cauchy sequence in L1 and has a
limit R ¥ L1. It still remains to show that R satisfies Eq. (26):

||R − K − K f R||L1=||(R − R (m)) − (K − K) − K f (R − R (m − 1))||L1

[ ||R − R (m)||L1+||K||L1 ||R − R (m − 1)||L1 Q 0
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We proceed to show that the assumption ||K||L1 < 1 is not restrictive. It
is always possible to find a real number c > 0 such that

o(t)=e−ctK(t)

satisfies ||o||L1 < 1 (it follows, for example, from Lebesgue’s dominated
convergence theorem). Set r ¥ L1 to be the resolvent (proven to exist) of o,

r=o+o f r

then R(t)=ectr(t) is the resolvent of K(t) as

R(t)=ecto(t)+F
t

0
ec(t − s)o(t − s) ecsr(s) ds=K(t)+(K f R)(t)

This completes the proof. L

The next theorem establishes the role of the resolvent as the solution
operator of the Volterra equation.

Proposition 9.2. Let K ¥ L1, then for every F ¥ Lp there is a unique
solution Q ¥ Lp to the Volterra equation,

Q=F+K f Q

given by

Q=F+R f F

where R is the resolvent of K. If F ¥ C then Q ¥ C.

Proof. Let F ¥ Lp and define

Q=F+R f F

which by Young’s inequality (25) is in Lp. Now,

Q − K f Q=Q − K f (F+R f F)

=Q − (K+K f R) f F

=Q − R f F

=F

hence Q is a solution of the Volterra equation.
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Conversely, let Q ¥ Lp be a solution of

Q=F+K f Q

then

Q=F+(R − R f K) f Q

=F+R f (Q − K f Q)

=F+R f F

which proves uniqueness. The same argument holds for F ¥ C. L

The next theorem shows that the resolvent R is continuous with
respect to K in the L1-norm topology:

Theorem 9.1. Let Kn Q K in L1, where the Kn have resolvents Rn

and K has resolvent R. Then Rn Q R and for sufficiently large n

||R − Rn ||L1 [
(1+||R||L1)2 ||K − Kn ||L1

1 − (1+||R||L1) ||K − Kn ||L1

Proof. The resolvents R, Rn satisfy

R=K+K f R

Rn=Kn+Kn f Rn

Subtracting one equation from the other,

(R − Rn)=(K − Kn)+K f R − Kn f Rn

=(K − Kn)+(K − Kn) f Rn+K f (R − Rn)

This equation can be viewed as a Volterra equation for R − Rn with kernel
K and forcing (K − Kn)+(K − Kn) f Rn. By Proposition 9.2 the solution is

R − Rn=[(K − Kn)+(K − Kn) f Rn]

+R f [(K − Kn)+(K − Kn) f Rn]

We define an ‘‘error,’’

En=(K − Kn)+R f (K − Kn) (27)
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in terms of which

R − Rn=En+R f En − En f (R − Rn) (28)

Taking norms and using the triangle inequality we obtain

||R − Rn ||L1 [
(1+||R||L1) ||En ||L1

1 − ||En ||L1
[

(1+||R||L1) en

1 − en
(29)

where

en=(1+||R||L1) ||K − Kn ||L1 \ ||En ||L1

and n is sufficiently large such that en < 1. L

In the sequel we also need a bound for ||Rn ||L1. Equation (28) implies

Rn=R − En − En f Rn

hence for n sufficiently large

||Rn ||L1 [
||R||L1+||En ||L1

1 − ||En ||L1
[

||R||L1+en

1 − en
(30)

Finally, we consider the L2 convergence of the integral of Rn:

Proposition 9.3. Let

Rn(t)=F
t

0
Rn(s) ds

R(t)=F
t

0
R(s) ds

then for n sufficiently large

||R−Rn ||L2 [
(1+||R||L1)2 ||K−Kn ||L2

1 − (1+||R||L1) ||K − Kn ||L1

Proof. Let

En(t)=F
t

0
En(s) ds
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where En is given by (27). Recalling that integration is equivalent to a con-
volution by 1[0, T], the integration of (27) yields

En=(K−Kn)+R f (K−Kn)

and by Young’s inequality:

||En ||L2 [ (1+||R||L1) ||K−Kn ||L2

Similarly, if we integrate (28) we obtain

(R−Rn)=En+R f En − En f (R−Rn)

and after taking norms:

||R−Rn ||L2 [
(1+||R||L1) ||En ||L2

1 − ||En ||L1
[

(1+||R||L1)2 ||K−Kn ||L2

1 − en
L

10. CONVERGENCE OF THE FORCING

We next investigate the convergence of the forcing functions Fn and fn.

Proposition 10.1. Let p > 1
2 , then Fn converges almost surely; we

denote the limit by F. The convergence is uniform on [0, T], hence F ¥ C.

Proof. Consider Fn given by (9). It is the sum of four series whose
(almost sure) convergence needs to be established.

1. The series ;.

j=1 j−2p[1 − cos(jpt)] is non-random and converges
uniformly by Weierstrass’ test for uniform convergence.

2. It is well known that tj, gj ’ O(j e) almost surely for any e > 0,
that is, for almost every w ¥ W there exists a constant Ce(w) > 0 such that

|tj |, |gj | [ Ce(w) j e, j=1, 2,...

(see ref. 19, p. 139). Thus by Weierstrass’ test, series ;.

j=1 tj j−2p[1 − cos(jpt)]
and ;.

j=1 gj j−2p sin(jpt) converge with probability one.

3. The series ;.

j=1 gj/jp converges almost surely if ;.

j=1 Var[gj/jp]
< ., which is an immediate consequence of Kolmogorov’s inequality (see
ref. 20, p. 296). Indeed, for p > 1

2 ,

C
.

j=1
Var 5gj

jp
6= C

.

j=1

1
j2p < . L
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Having established the (almost sure) convergence of Fn, the difference
between F and Fn is given by the tail of the series:

F − Fn=Q0 C
.

j=n+1

1 − cos(jpt)
j2p + C

.

j=n+1
tj

1 − cos(jpt)
j2p

+t C
.

j=n+1

gj

jp − C
.

j=n+1
gj

sin(jpt)
j2p

The next two theorems establish the rate of convergence of Fn in the
L1(W; C) and L2(W; L2) norms.

Proposition 10.2. Fn Q F in L1(W; C) and

||F − Fn ||L1(W; C) [
C

np − 1/2

Proof. We show that Fn is a Cauchy sequence in L1(W; C). Let
n > m, then

||Fn − Fm ||L1(W; C) [ I1+I2+I3+I4

where

I1=|Q0 | sup
0 [ t [ T

: C
n

j=m+1

1 − cos(jpt)
j2p

:

I2=E 5 sup
0 [ t [ T

: C
n

j=m+1
tj

1 − cos(jpt)
j2p

:6

I3=E 5 sup
0 [ t [ T

:t C
n

j=m+1

gj

jp
:6

I4=E 5 sup
0 [ t [ T

: C
n

j=m+1
gj

sin(jpt)
j2p

:6

The first term involves no expectation values and is easy to bound:

I1 [ 2 |Q0 | C
n

j=m+1

1
j2p [

2 |Q0 |
2p − 1

·
1

m2p − 1

If t is a standard Gaussian variable then E[|t|]=`2/p, hence

I2 [ E 5 sup
0 [ t [ T

C
n

j=m+1
|tj |

|1 − cos(jpt)|
j2p

6 [ C
n

j=m+1

2E |tj |
j2p [

2 `2/p

2p − 1
·

1
m2p − 1

Asymptotic and Numerical Analyses for Mechanical Models of Heat Baths 1147



and

I4 [ E 5 sup
0 [ t [ T

C
n

j=m+1
|gj |

|sin(jpt)|
j2p

6 [ C
n

j=m+1

E |gj |
j2p [

`2/p

2p − 1
·

1
m2p − 1

To bound I3 we use the following inequality: let X1, X2,... be a sequence of
independent variables that have mean 0 and variance s2

1, s2
2,... . It follows

from Cauchy–Schwarz that

E 5: C
.

k=n+1
Xk

:6 [ = C
.

k=n+1
s2

k

thus,

I3 [ TE 1 : C
n

j=m+1

gj

jp
: 2 [ T = C

n

j=m+1

1
j2p [

T

`2p − 1
·

1
mp − 1/2

This is the term which has the slowest decay rate. Collecting all four terms,
we obtain the desired result. L

Proposition 10.3. Fn Q F in L2(W; L2) and

||F − Fn ||L2(W; L2) [
C

np − 1/2

Proof. Let n > m, then

||Fn − Fm ||L2(W; L2) [ I1+I2+I3+I4

where

I2
1=Q2

0 F
T

0

5 C
n

j=m+1

1 − cos(jpt)
j2p

62

dt

I2
2=E 3F

T

0

5 C
n

j=m+1
tj

1 − cos(jpt)
j2p

62

dt4

I2
3=E 3F

T

0

5t C
n

j=m+1

gj

jp
62

dt4

I2
4=E 3F

T

0

5 C
n

j=m+1
gj

sin(jpt)
j2p

62

dt4
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For I1 we have

I2
1 [ Q2

0 F
T

0

1 2
2p − 1

·
1

m2p − 1
22

dt [
4Q2

0T
(2p − 1)2 ·

1
m4p − 2

For I2, I3, I4 we use Fubini’s theorem to interchange expectation with time
integration, and then use the independence of the tj, gj ’ N(0, 1):

I2
2 [ F

T

0
C
n

j=m+1

51 − cos(jpt)
j2p

62

dt [
4T

4p − 1
·

1
m4p − 1

I2
3 [

T3

3
E 51 C

n

j=m+1

gj

jp
226=

T3

3
C
n

j=m+1

1
j2p [

T3

3(2p − 1)
·

1
m2p − 1

I2
4 [ F

T

0
C
n

j=m+1

5sin(jpt)
j2p

62

dt [
T

4p − 1
·

1
m4p − 1

I3 has the slowest convergence rate. Collecting all four terms we obtain the
desired result. L

For the forcing function of the momentum equation, fn, we can only
prove convergence in L2(W; L2):

Proposition 10.4. fn converges (to f) in L2(W; L2) and

||f − fn ||L2(W; L2) [
C

np − 1/2

Proof. Let n > m, then from (11)

fn − fm= C
n

j=m+1
tj

sin(jpt)
jp + C

n

j=m+1
gj

1 − cos(jpt)
jp

Taking norms,

||fn − fm ||L2(W; L2) [ I1+I2

where

I2
1=E 3F

T

0

5 C
n

j=m+1
tj

sin(jpt)
jp

62

dt4

I2
2=E 3F

T

0

5 C
n

j=m+1
gj

1 − cos(jpt)
jp

62

dt4
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Interchanging expectation and integration,

I2
1 [ F

T

0
C
n

j=m+1

5sin(jpt)
jp

62

dt [
T

2p − 1
1

m2p − 1

I2
2 [ F

T

0
C
n

j=m+1

51 − cos(jpt)
jp

62

dt [
4T

2p − 1
1

m2p − 1 L

11. CONVERGENCE OF Qn AND Pn

In the last three sections we have shown the convergence of Kn and
Rn in L1, of Fn in L1(W; C) and L2(W; L2), and of fn in L2(W; L2). These
results imply the convergence of Qn, Pn to the solutions Q, P of the
Volterra equations

Q=F+K f Q

P=f+K f P

First, the almost sure convergence of Fn implies the almost sure conver-
gence of Qn:

Proposition 11.1. Let Kn Q K in L1 and Fn Q F almost surely in Lp.
Let Q and Qn be the respective solutions of the Volterra equations

Q=F+K f Q

Qn=Fn+Kn f Qn

then Qn Q Q almost surely in Lp and for sufficiently large n

||Q − Qn ||Lp [
1+||R||L1

1 − en
[||F − Fn ||Lp+en ||F||Lp] (31)

where as in Section 9

en=(1+||R||L1) ||K − Kn ||L1

A similar inequality holds with || · ||Lp replaced by || · ||C.

Proof. By Proposition 9.2 Q and Qn are given by

Q=F+R f F

Qn=Fn+Rn f Fn
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Subtracting one equation from another,

(Q − Qn)=(F − Fn)+Rn f (F − Fn)+(R − Rn) f F (32)

Taking norms:

||Q − Qn ||Lp [ (1+||Rn ||L1) ||F − Fn ||Lp+||R − Rn ||L1 ||F||Lp

[
1+||R||L1

1 − en
[||F − Fn ||Lp+en ||F||Lp]

where we have used (30) and (29) to bound ||Rn ||L1 and ||R − Rn ||L1. L

Quantitative error bounds are obtained within the spaces L1(W; C)
and L2(W; L2):

Proposition 11.2. Qn Q Q in L1(W; C) and for sufficiently large n

||Q − Qn ||L1(W; C) [
1+||R||L1

1 − en
[||F − Fn ||L1(W; C)+en ||F||L1(W; C)] (33)

Proof. This follows directly from (31), with || · ||Lp replaced by || · ||C,
and after taking expectation values. L

Proposition 11.3. Qn Q Q in L2(W; L2) and for sufficiently large n

||Q − Qn ||L2(W; L2) [
1+||R||L1

1 − en
[||F − Fn ||L2(W; L2)+en ||F||L2(W; L2)] (34)

Proof. This follows from (31) after squaring, taking expectation
values, and using the Cauchy–Schwarz inequality. L

Proposition 11.4. Pn Q P in L2(W; L2) and for sufficiently large n

||P − Pn ||L2(W; L2) [
1+||R||L1

1 − en
[||f − fn ||L2(W; L2)+en ||f||L2(W; L2)] (35)

Proof. Same as Proposition 11.3 with the substitution Q W P and
F W f. L

Finally, an alternative expression can be derived for the convergence
of Qn in L2(W; L2). It will be used below to interpret numerical data.
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Proposition 11.5. Qn Q Q in L2(W; L2) with

||Q − Qn ||L2(W; L2) [ (1+||R||L1) ||F − Fn ||L2(W; L2)

+(|Q0 |+|Q0 | ||Kn ||L1+`T ||fn ||L2(W; L2)) ||R−Rn ||L2 (36)

Proof. Equation (32) can also be written as

(Q − Qn)=(F − Fn)+R f (F − Fn)+(R − Rn) f Fn (37)

We then observe that Fn can be expressed as

Fn(t)=Q0+F
t

0
[fn(s) − Q0Kn(s)] ds

or equivalently,

Fn=Q01[0, T]+1[0, T] f (fn − Q0Kn)

Since (1[0, T] f f) f g=f f (1[0, T] f g) it follows that

(R − Rn) f Fn=Q0(R − Rn) f 1[0, T]+(R − Rn) f 1[0, T] f (fn − Q0Kn)

=Q0(R−Rn)+(R−Rn) f (fn − Q0Kn)

Substituting this back into (37), we take norms, and use Young’s inequality
to obtain

||Q − Qn ||L2(W; L2) [ (1+||R||L1) ||F − Fn ||L2(W; L2)

+(|Q0 |+|Q0 | ||Kn ||L1+||fn ||L2(W; L1)) ||R−Rn ||L2

We recover the desired results by noting that

||fn ||L2(W; L1) [ `T ||fn ||L2(W; L2) L

12. NONLINEAR POTENTIAL

Our results can be extended to the case where the distinguished par-
ticle is driven by a non-harmonic potential force. Let the Hamiltonian of
the system be

H(Qn, Pn, q, p)=
1
2

(P2
n+Q2

n)+V(Qn)+
1
2

C
n

j=1

5p2
j

mj
+kj(qj − Qn)26
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The equations of motion are

Q̈n=−Q − VŒ(Qn)+ C
n

j=1
(qj − Qn), Qn(0)=Q0, Q̇n(0)=P0

j−2pq̈j=−(qj − Qn), qj(0)=Q0+tj, q̇j(0)=jpgj

giving rise to the nonlinear Volterra equation (Miller (21))

Qn=Fn − t f VŒ(Qn)+Kn f Qn (38)

where Kn and Fn are given by (7) and (9). The limiting equation as n Q . is

Q=F − t f VŒ(Q)+K f Q (39)

To prove that (39) has a unique solution we view − t f VŒ(Q) as
an additional forcing term as assume that VŒ is globally Lipschitz, i.e.,
|VŒ(x) − VŒ(y)| [ L |x − y|. If (39) has a solution Q ¥ C, then Proposi-
tion 9.2 implies that

Q=F − t f VŒ(Q)+R f [F − t f VŒ(Q)] (40)

Conversely, if Q is a solution of (40) with Q, F ¥ C, then Q satisfies (39).

Theorem 12.1. For almost all w ¥ W, Eq. (40) has a unique solution
Q ¥ C.

Proof. We solve Eq. (40) by successive approximation:

Q (k+1)=F − t f VŒ(Q(k))+R f [F − t f VŒ(Q (k))]

Q (0)=F+R f F

Subtracting Q (k) from Q (k+1), taking norms, and using the global Lipschitz
bound, we have

||Q (k+1) − Q (k)||C [ L ||t||L1 (1+||R||L1) ||Q (k) − Q (k − 1)||C

which implies the convergence of Q (k) by a contraction argument, provided

L ||t||L1 (1+||R||L1) < 1

If this is not the case we rewrite (40) as

e−ctQ(t)=e−ctF(t) − (e−ctt) f W(t, e−ctQ(t))

+(e−ctR(t)) f [e−ctF(t) − (e−ctt) f W(t, e−ctQ(t))] (41)
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where c > 0 and W(t, x)=e−ctVŒ(ectx). Since |W(t, x) − W(t, y)| [ L |x − y|,
we can apply the previous argument and get

||e−ct(Q (k+1) − Q (k))||C [ L ||e−ctt||L1 (1+||e−ctR||L1) ||e−ct(Q (k) − Q (k − 1))||C

Note that ||e−ctR||L1 [ ||R||L1 and ||e−ctt||L1 [ 1/c2. The method of successive
approximations will therefore converge if c2 > L(1+||R||L1).

Finally, suppose that (41) has two solutions Q, S. Then

||e−ct(Q − S)||C [ L ||e−ctt||L1 (1+||e−ctR||L1) ||e−ct(Q − S)||C

[
1
c2 L(1+||R||L1) ||e−ct(Q − S)||C

i.e., Q=S. L

To estimate Q − Qn we use the fact that Rn=Kn+Kn f Rn and rewrite
(38) as

Qn=Fn − t f VŒ(Qn)+Rn f [Fn − t f VŒ(Qn)]

Subtracting this from (40) gives

(Q − Qn)=(F − Fn) − t f [VŒ(Q) − VŒ(Qn)]+Rn f (F − Fn)

− Rn f t f [VŒ(Q) − VŒ(Qn)]+(R − Rn) f [F − t f VŒ(Q)]
(42)

Following the proof of Proposition 11.1 and using that VŒ is Lipschitz
continuous we obtain

||Q − Qn ||L1(W; C) [ (1+||Rn ||L1)[||F − Fn ||L1(W; C)+L ||t||L1 ||Q − Qn ||L1(W; C)]

+||R − Rn ||L1 ||F − t f VŒ(Q)||L1(W; C)

The estimates for ||Rn ||L1 and ||R − Rn ||L1 in (30) and (28) then yield

||Q − Qn ||L1(W; C) [
1+||Rn ||L1

1 − ||t||L1 (1+||Rn ||L1) L − en

× {||F − Fn ||L1(W; C)+en ||F − t f VŒ(Q)||L1(W; C)}
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for T sufficiently small. If this is not the case we multiply both sides of (42)
by e−ct. Since the structure is unchanged and e−ct [ 1 it follows that

||e−ct(Q − Qn)||L1(W; C) [
1+||Rn ||L1

1 − L ||e−ctt||L1 (1+||Rn ||L1) − en

× {||F − Fn ||L1(W; C)+en ||F − t f VŒ(Q)||L1(W; C)}

Using the bounds for ||F − Fn ||L1(W; C) and en from Propositions 10.2 and
11.1, and letting c and n be sufficiently large, we conclude

||Q − Qn ||L1(W; C) [
ecT(1+||Rn ||L1)

1 − 1
c2 L ||(1+||Rn ||L1) − en

·
C

np − 1
2

The nonlinear case therefore has the same rate of convergence as the linear
case.

13. NUMERICAL ANALYSIS

We next analyze the discrete Volterra equation (18) that results from
the symplectic Euler scheme (12). The limit under consideration is the
following: we take h Q 0 and n Q ., such that nph remains approximately
fixed: n=N(t/h)1/pM, t [ 1.

We compare the numerical solution Qk
n , k=0, 1,..., N − 1, Nh=T,

with the (exact) n-particle solution Qn(t). The non-standard aspect of this
analysis is that n does not remain fixed as h Q 0; the equations change with
step size.

It is very convenient to use similar notations for both continuous and
discrete systems. The continuous Volterra equation is written as

LnQn — Qn − Kn f Qn=Fn (43)

where the convolution is defined as before by

(Kn f Qn)(t)=F
t

0
Kn(t − s) Qn(s) ds

The discrete Volterra equation is written as

LnQn — Qn − Kn f Qn=Fn (44)

Asymptotic and Numerical Analyses for Mechanical Models of Heat Baths 1155



where the discrete convolution is defined analogously by

(Kn f Qn)k=h C
k − 1

a=0
Kk − a

n Qa

n

We carry out our analysis in L2(W; L2) and L2(W; L2
h) and use

mapping operators to connect the continuous and the discrete spaces; see
Aubin (22) and Linz (23) for related techniques.

Definition 13.1. The restriction operator rh : L2(W; L2) W L2(W; L2
h)

is defined by

(rhQ)k=
1
h

F
T

0
qk(t) Q(t) dt, k=0, 1,..., N − 1

where Q ¥ L2(W; L2), and qk(t) is the indicator function of the interval
[tk, tk+1). The random variable (rhQ)k is the cell-average of Q(t) in the kth
subinterval.

Definition 13.2. The prolongation operator ph : L2(W; L2
h) W L2(W; L2)

is defined by

(phQ)(t)= C
N − 1

k=0
Qkqk(t)

where Q ¥ L2(W; L2
h). The range of ph consists of piecewise-constant random

functions.

We now establish a number of properties satisfied by the rh and ph:

Lemma 13.1. The restriction and prolongation operators satisfy the
following properties:

1. ||rh ||=1.

2. ||ph ||=1.

3. rh ph is the identity in L2(W; L2
h).

4. For Q(t)=> t
0 P(s) ds, P ¥ L2(W; L2),

||phrhQ − Q||L2(W; L2) [ ||P||L2(W; L2) h (45)
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Proof.

1. For all Q ¥ L2(W; L2):

||rhQ||2
L2(W; L2

h)=E 5h C
N − 1

k=0
[(rhQ)k]26

=E 5h C
N − 1

k=0

1
h2
1F

T

0
Q(t) qk(t) dt2

26

[ E 51
h

C
N − 1

k=0

1F
T

0
qk(t) dt21F

T

0
Q2(t) qk(t) dt26

=E 5 C
N − 1

k=0
F

T

0
Q2(t) qk(t) dt6

=E 5F
T

0
Q2(t) dt6

=||Q||2
L2(W; L2)

hence ||rh || [ 1. Equality holds if Q(t) is piecewise-constant.

2. For all Q ¥ L2(W; L2
h):

||phQ||2
L2(W; L2)=1E 5h C

N − 1

k=0
(Qk)2621/2

=||Q||2
L2(W; L2

h)

that is ||ph ||=1.

3. The third property is obvious.

4. Let Q(t)=> t
0 P(s) ds, P ¥ L2(W; L2). The difference phrhQ − Q can

be written in the following form:

(phrhQ − Q)(t)=
1
h

C
N − 1

k=0
qk(t) F

tk+1

tk

[Q(s) − Q(t)] ds

=
1
h

C
N − 1

k=0
qk(t) F

tk+1

tk

F
s

t
P(y) dy ds
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Taking norms and using Cauchy–Schwarz:

||phrhQ − Q||2
L2(W; L2)=

1
h2 E C

N − 1

k=0
F

tk+1

tk

1F
tk+1

tk

F
s

t
P(y) dy ds2

2

dt

[
1
h2 E C

N − 1

k=0
F

tk+1

tk

h2 F
tk+1

tk

F
s

t
P2(y) dy ds dt

[ h2E C
N − 1

k=0
F

tk+1

tk

P2(y) dy

=h2 ||P||2
L2(W; L2) L

Consider now Qn and Qn given by (43) and (44), respectively. We
apply rh to (43) and then add and subtract Kn f (rhQn),

Ln f (rhQn)=rhQn − Kn f (rhQn)

=rh(Kn f Qn) − Kn f (rhQn)+rhFn

Subtracting LnQn=Fn we obtain

Ln f (rhQn − Qn)=y1+y2

where

y1=rh(Kn f Qn) − Kn f (rhQn)

y2=rhFn − Fn

If Ln is invertible then:

||rhQn − Qn ||L2(W; L2
h) [ ||L−1

n || [||y1 ||L2(W; L2
h)+||y2 ||L2(W; L2

h)]

The right hand side can be interpreted by the standard terminology of
numerical analysis. The two terms inside the brackets are truncation errors.
y1 is the truncation error associated with the approximation of the integral
operator, and y2 is the truncation error associated with the forcing. The
total truncation error is amplified by the discrete solution operator L−1

n .
The scheme is said to be stable if L−1

n is uniformly bounded.

14. STABILITY ANALYSIS

In this section we show that the scheme is stable, i.e., that L−1
n is uni-

formly bounded. We concentrate on the range of parameters 1/2 < p < 1
where we expect order reduction.
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Proposition 14.1. Let Ln : L2(W; L2
h) W L2(W; L2

h) be a sequence of
operators of the form

LnQn=Qn − Kn f Qn

where Kn is uniformly bounded in L1
h , i.e., ||Kh ||L1

h
[ C < .. Then the

sequence Ln is stable.

Proof. We need to show that L−1
n exists and has bounded norm. The

proof is similar to the existence proof for the resolvent in Section 9. The
equation LnQn=Fn is solved by successive approximations:

Qn=Fn+Kn f Fn+Kn f Kn f Fn+ · · ·

Suppose first that

||Kn ||L1
h

[ C < 1

Using the discrete Young inequality,

||Kn f Qn ||L2(W; L2
h) [ ||Kn ||L1

h
||Qn ||L2(W; L2

h) (46)

the sequence of successive approximations forms a Cauchy sequence in
L2(W; L2

h), and

||Qn ||L2(W; L2
h) [ C

.

j=1
||Kn || j

L1
h

||Fn ||L2(W; L2
h) [ (1 − C)−1 ||Fn ||L2(W; L2

h)

that is,

||L−1
n || [ (1 − C)−1

If C > 1, then there exists a c > 0 such ok
n=Kk

ne−chk satisfies

||on ||L1
h

[ CŒ < 1

Let Sk
n=Qk

ne−chk and Gk
n=Fk

ne−chk, then,

Sn=Gn+on f Gn+on f on f Gn+ · · ·

from which follows that

||Sn ||L2(W; L2
h) [ (1 − CŒ)−1 ||Gn ||L2(W; L2

h)
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and

||Qn ||L2(W; L2
h) [ ecT ||Sn ||L2(W; L2

h) [ (1 − CŒ)−1 ecT ||Fn ||L2(W; L2
h)

hence

||L−1
h || [ (1 − CŒ)−1 ecT

L

Thus, stability boils down to whether Kn is a bounded sequence in L1
h .

To prove that this is indeed the case we need the following three lemmas:

Lemma 14.1. For all 0 [ y < 1 and k=1, 2,...,

|y2U −

k − 1(1 − y2)| [ 2(k − 1)

Proof. Starting from the definition of the Chebyshev polynomials,

Uk − 1(x)=
sin(k cos−1 x)
sin(cos−1 x)

explicit differentiation gives

U −

k − 1(x)=
− 1

1 − x2 [(k − 1) Tk(x) − Uk − 2(x)]

For 0 < x [ 1:

|(1 − x) U −

k − 1(x)| [
1

1+x
[(k − 1) |Tk(x)|+|Uk − 2(x)|] [ (k − 1)+(k − 1)

where we have used bounds for |Tk(x)| and |Uk − 2(x)| (see Appendix B).
Setting x=1 − y2 we recover the desired result. L

Lemma 14.2. For all 0 [ y < 1 and k=1, 2,...,

|y4U'

k − 1(1 − y2)| [ 6(k − 1)+(k2 − 1) y

Proof. Let 0 < x [ 1. Differentiating U −

k − 1(x) we get

U'

k − 1(x)=
− 3x

(1 − x2)2 [(k − 1) Tk(x) − Uk − 2(x)] −
k2 − 1
1 − x2 Uk − 1(x)
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which immediately implies

|U'

k − 1(x)| [
6(k − 1)
(1 − x)2+

k2 − 1
(1 − x)3/2

Setting x=1 − y2 and multiplying both sides by y4 we obtain the desired
result. L

Lemma 14.3. For all 0 [ y0 < 1, 0 [ c < 1, and k=1, 2,...,

|Ik(c, y0)|=:Fy0

0

Uk − 1(1 − y)
yc

dy : [ p2

21+c(1 − c)
k2c − 1

Proof. Changing variables into x=cos−1(1−y), this integral reduces to

Ik(c, y0)=F
x0

0

sin(kx)
(1 − cos x)c

dx

where x0=cos−1(1 − y0) ¥ [0, p/2). The integrand is the product of an
oscillatory function, sin(kx), and a positive, decreasing, and convex func-
tion (1 − cos x)−c. This structure implies that Ik(c, y0) reaches its maximum
value after half a period of the sine function, i.e., at x0=p/k. Thus,

|Ik(c, y0)| [ F
p/k

0

sin(kx)
(1 − cos x)c

dx

=F
p/k

0

sin(kx)
2c sin2c(x/2)

dx

[ F
p/k

0

kx
2c(x/p)2c

dx

=
p2

21+c(1 − c)
k2c − 1

where we have estimated sin(kx) upward by kx and sin(x/2) downward by
x/p. L

Lemma 14.4. Let 1
2 < p < 1, then Kn satisfies the pointwise estimate:

|Kk
n | [ tk+

p2

t1/p − 1
k

+tk+
B2

2
564p2tk+2 `2 p2 2 − p

1 − p
t2

k
6

where B2 is a Bernoulli number.
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Proof. We write the discrete kernel as

Kk
n=−tk − C

n

j=1
wk(j)

where

wk(x)=h Uk − 1(1 − 1
2x2ph2)

The Euler–Maclaurin formula truncated after one term is

C
n

j=1
wk(j)=F

n

0
wk(x) dx+

1
2

[wk(n) − wk(0)] −
B2

2
C
n

j=1
w'

k (j+hj)

where 0 < hj < 1.
We estimate the right hand side term-by-term: wk(n) and wk(0) are

bounded by

sup
0 [ j [ n

|wk(j)|=h sup
0 < x [ 1

|Uk − 1(x)|=hk=tk (47)

The first two derivatives of wk(x) are given by

w −

k(x)=−ph3x2p − 1U −

k − 1(1 − 1
2x2ph2)

w'

k (x)=−p(2p − 1) h3x2p − 2U −

k − 1(1 − 1
2x2ph2)+p2h5x4p − 2U'

k − 1(1 − 1
2x2ph2)

Setting 1
2x2ph2=y2 and using Lemmas 14.1 and 14.2, we find

|w'

k (x)| [ 2p(2p − 1)
h
x2 |y2U −

k − 1(1 − y2)|+4p2 h
x2 |y4U'

k − 1(1 − y2)|

[ 2p(2p − 1)
h
x2 2(k − 1)+4p2 h

x2 [6(k − 1)+(k2 − 1) 2−1/2xph]

[ 32p2 tk

x2+2 `2 p2 t2
k

x2 − p

Thus

: C
n

j=1
w'

k (j+hj): [ 32p2tk
51+F

.

1

dx
x2
6+2 `2 p2t2

k
51+F

.

1

dx
x2 − p

6

=64p2tk+2 `2 p2t2
k ·

2 − p
1 − p

(48)
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It remains to bound the integral:

F
n

0
wk(x) dx=h F

n

0
Uk − 1(1 − 1

2x2ph2) dx

=
21/2p − 1

p
1

h1/p − 1 F
1
2

n2ph2

0

Uk − 1(1 − y)
y1 − 1/2p dy

Lemma 14.3 with c=1 − 1/2p gives

:Fx

0

Uk − 1(1 − y)
y1 − 1/2p dy : [ 2pp2

22 − 1/2pk1/p − 1

hence,

:F n

0
wk(x) dx : [ p2

t1/p − 1
k

(49)

Combining (47), (48), and (49) we obtain the desired bound. L

An immediate consequence is:

Theorem 14.1. The discrete kernels Kn form a bounded sequence
in L1

h , hence the sequence of discrete operators Ln is stable.

15. CONSISTENCY ANALYSIS: THE KERNEL

In this section we evaluate the truncation error associated with the
integral operator:

y1=rh(Kn f Qn) − Kn f (rhQn)

Adding and subtracting rh[Kn f (phrhQn)], y1 splits into

y1=y1a+y1b

where

y1a=rh[Kn f (phrhQn)] − Kn f (rhQn)

and

y1b=rh[Kn f (Qn − phrhQn)]
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The second term, y1b, can be estimated as follows:

||y1b ||L2(W; L2
h) [ ||rh || ||Kn ||L1 ||Qn − phrhQn ||L2(W; L2)

[ ||Kn ||L1 ||Pn ||L2(W; L2)h

where we have used Lemma 13.1. Both ||Kn ||L1 and ||Pn ||L2(W; L2) are uni-
formly bounded, thus, the convergence of y1b is first-order, which is the
convergence rate of the symplectic Euler method for non-stiff systems.

To evaluate y1a we first write it in explicit form:

yk
1a=

1
h

F
tk+1

tk

F
t

0
Kn(t − s) C

N − 1

a=0
qa(s)(rhQn)a ds dt − h C

k − 1

a=0
Kk − a

n (rhQn)a

Note that the summation in the first term can be truncated at a=k.
Separating the a=k term from the other terms,

yk
1a=D(rhQn)k+h C

k − 1

a=0
DKa − k

n (rhQn)a

where

D=
1
h

F
tk+1

tk

F
t

tk

Kn(t − s) ds dt=−
h2

6
− C

n

j=1

1
j3ph

[sin(jph) − jph]

and

DKk − a

n =
1
h2 F

tk+1

tk

F
sa+1

sa

Kn(t − s) ds dt − Kk − a

n

= C
n

j=1

5 1
jp

sin[(k − a) fj]
cos(1

2fj)
−

4 sin2(1
2 jph)

j3ph2 sin[jp(tk − ta)]6

Using the triangle inequality, the discrete Young inequality (46), and the
boundedness of rh, we obtain

||y1a ||L2(W; L2
h) [ (|D|+||DKn ||L1

h
) ||Qn ||L2(W; L2)

By Taylor’s expansion |sin(jph) − jph| [ 1
6 j3ph3, hence

|D| [
h2

6
+ C

n

j=1

1
j3ph

j3ph3

6
=

h2

6
+

nh2

6
[ Ch2 − 1/p
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It remains to evaluate ||DKn ||L1
h

which is what we undertake next. To
simplify notations, we write DKn as

DKk
n= C

n

j=1
wk(j)=wk(1)+ C

n

j=2
wk(j)

where

wk(x)=
1
xp
3 sin[2k sin−1(1

2xph)]

`1 − (1
2xph)2

−
sin2(1

2xph)
(1

2xph)2 sin(kxph)4 (50)

and use the Euler–Maclaurin formula:

C
n

j=1
wk(j)=F

n

1
wk(x) dx+

1
2

[wk(n)+wk(1)]

+ C
r − 1

m=1

B2m

(2m)!
[w (2m − 1)

k (n) − w (2m − 1)
k (1)] −

B2r

(2r)!
C
n

j=2
w (2r)

k (j+hj)
(51)

where 0 < hj < 1 and r is determined below. We have separated wk(1) from
the rest of the sum to avoid function evaluations at the origin.

We now make the following observation: the functions

1

`1 − z2
and

sin2z
z2

are both of the form 1+g2(z), where g2(z) represents a generic expression
for a function that is analytic at |z| < 1 and has a double root at the origin.
In particular, for every function g2(z) in this class there exists a constant
C > 0 such that

|g2(z)| [ C |z|2 (52)

for |z| [ 1/2. This abstract notation implies the following algebraic equiva-
lences: g2(z) ± g2(z) ’ g2(z), ag2(z) ’ g2(z), and zg −

2(z) ’ g2(z). Also, let the
function trig(z) represent any of the trigonometric functions ± sin(z) or
± cos(z). Then, wk(x), given by (50), is of the form

wk(x)=wk, 1(x)+wk, 2(x)+wk, 3(x)
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where

wk, 1(x)=x−ap{trig[2k sin−1(1
2xph)] − trig[kxph]}

wk, 2(x)=x−ap trig[2k sin−1(1
2xph)] · g2(1

2xph)

wk, 3(x)=x−ap trig(kxph) · g2(1
2xph)

and a=1. We have introduced the parameter a ¥ [1, 2] to exploit the
present analysis in the next section as well.

By Taylor’s expansion

2 sin−1(1
2z)=z+

hz
4(1 − 1

4h2z2)3/2

z2

2

for some 0 < h < 1, hence

|2 sin−1(1
2z) − z| [ 1

4 |z|3, |z| [ 1

Combined with the trigonometric identity,

trig(a) − trig(b)=2 trigŒ[1
2(a+b)] · sin[1

2(a − b)]

we get

|trig[2k sin−1(1
2xph)] − trig(kxph)| [ min(2, 1

4 kx3ph3) (53)

We proceed to evaluate the various terms in the Euler–Maclaurin
formula (51). Using (52), (53), and the boundedness of trig(x),

|wk, 1(1)| [ 1 · 1
4 kh3 [ Ch2

|wk, 1(n)| [ n−ap · 2 [ 2ha

|wk, 2(1)|, |wk, 3(1)| [ 1 · 1 · Ch2 [ Ch2

|wk, 2(n)|, |wk, 3(n)| [ n−ap · 1 · C [ Cha

hence,

|wk(n)|+|wk(1)| [ Cha (54)

Next we evaluate the derivatives of wk(x). We start with wk, 3(x) and
note that its first derivative can be recast in the following form:

w −

k, 3(x)=
1

xap
31

x
trig(kxph) · g2(1

2xph)+
tk

x1 − p trigŒ(kxph) · g2(1
2xph)4 (55)
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where we have used the properties of the class of functions g2(z). One can
prove by induction that

w (m)
k, 3(x)=

1
xap C

m

s=0

1m
s
2 t s

k

x s(1 − p)+(m − s) trig(s)(kxph) · g2(1
2xph)

which leads to the following estimate:

|w (m)
k, 3(x)| [

1
xap C

m

s=0

1m
s
2 t s

k · 1 · Cx2ph2

x s(1 − p)+(m − s) [ C(1+tk)m x2ph2

xm(1 − p)+ap (56)

where we have used the fact that m(1 − p) [ s(1 − p)+(m − s) for s [ m and
1/2 < p < 1.

Examining wk, 2(x) we see that it has the same structure as wk, 3(x),
hence by the same arguments,

w (m)
k, 2(x)=

1
xap C

m

s=0

1m
s
2 t s

k

x s(1 − p)+(m − s) trig(s)[2k sin−1(1
2xph)] · g2(1

2xph)

and

|w (m)
k, 2(x)| [ C(1+tk)m x2ph2

xm(1 − p)+ap (57)

The term wk, 1(x) requires more attention. Differentiating it once we obtain

w −

k, 1(x)=−apx−ap − 1{trig[2k sin−1(1
2xph)] − trig(kxph)}

+ptkx−ap+(p − 1) trigŒ[2k sin−1(1
2xph)] · [1 − 1

4 x2ph2]−1/2

− ptkx−ap+(p − 1) trigŒ(kxph)

Noting that [1 − 1
4 x2ph2]−1/2=1+g2(1

2xph), this can be rewritten as

w −

k, 1(x)=−apx−ap − 1{trig[2k sin−1(1
2xph)] − trig(kxph)}

+ptkx−ap+(p − 1){trigŒ[2k sin−1(1
2xph)] − trigŒ(kxph)}+w −

k, 2(x)

where the last term represents an expression of the same form as one of the
terms in w −

k, 2(x). By induction,

w (m)
k, 1(x)=

1
xap C

m

s=0

1m
s
2 Cs

t s
k

x s(1 − p)+(m − s)

× {trig(s)[2k sin−1(1
2xph)] − trig(s)(kxph)}+w(m)

k, 2(x)
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where the Cs are constants that depend on a, p, and s. Using (53) and (56),

|w (m)
k, 1(x)| [ C(1+tk)m 1

xm(1 − p)+ap min(1, kx3ph3)+|w (m)
k, 2(x)|

which combined with (56) and (57) gives

|w (m)
k (x)| [ C(1+tk)m 1

xm(1 − p)+ap [x2ph2+min(1, kx3ph3)] (58)

and in particular,

|w (m)
k (1)| [ C(1+tk)m+1 h2 [ Cha

|w (m)
k (n)| [ C(1+tk)m ha+m(1/p − 1) [ Cha

Let r be fixed, then there exists a constant C > 0 such that

: C
r − 1

m=1

B2m

(2m)!
[w(2m − 1)

k (n) − w (2m − 1)
k (1)] : [ Cha (59)

Setting now m=2r and x \ 1,

|w (2r)
k (x)| [ C(1+tk)2r x2ph2+kx3ph3

x2r(1 − p)+ap [ C(1+tk)2r+1 x3ph2

x2r(1 − p)+ap

If r > [1+p(3 − a)]/2(1 − p) then a crude estimate gives

B2r

(2r)!
: C

n

j=2
w (2r)

k (j+hj) : [ C(1+tk)2r+1 h2 C
n

j=2

1
j2r(1 − p)+(a − 3) p

[ C(1+tk)2r+1 h2 (60)

It remains to evaluate >n
1 wk(x) dx. Changing variables into y=1

2xph
we get

F
n

1
wk, 1(x) dx+F

n

1
wk, 2(x) dx+F

n

1
wk, 3(x) dx — I1+I2+I3
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where

I1=Cha − 1/p F
1
2
nph

1
2
h

1
y1+a − 1/p {trig[2k sin−1(y)] − trig[2ky]} dy

I2=Cha − 1/p F
1
2
nph

1
2
h

g2(y)
y1+a − 1/p trig[2k sin−1(y)] dy

I3=Cha − 1/p F
1
2
nph

1
2
h

g2(y)
y1+a − 1/p trig(2ky) dy

We start with I3. Using trigœ(x)=−trig(x) we write it as follows:

I3=Cha − 1/p F
1
2
nph

1
2
h

g2(y)
y1+a − 1/p

5−
trigŒ(2ky)

2k
6Œ

dy

Integrating by parts we find

I3=−
C
2k

ha − 1/p 5 g2(y)
y1+a − 1/p trigŒ(2ky)6

1
2
nph

1
2
h

+
C
2k

ha − 1/p F
1
2
nph

1
2
h

5 g2(y)
y1+a − 1/p

6Œ
trigŒ(2ky) dy

Since y−(1+a − 1/p)g2(y) is uniformly bounded on (0, 1/2], and
|[y−(1+a − 1/p)g2(y)]Œ| is integrable,

|I3 | [
C
2k

ha − 1/p

Consider next I2: changing variables, z=sin−1(y), we obtain

I2=Cha − 1/p F
sin − 1(1

2
nph)

sin − 1(1
2
h)

g2(sin z) cos z
(sin z)1+a − 1/p trig(2kz) dz

Noting that

g2(sin z) ’ g2(z)

cos z ’ 1+g2(z)

(sin z)−(1+a − 1/p) ’ z−(1+a − 1/p)[1+g2(z)]

we can write

I2=Cha − 1/p F
sin − 1(1

2
nph)

sin − 1(1
2
h)

g2(z)
z1+a − 1/p trig(2kz) dz

Asymptotic and Numerical Analyses for Mechanical Models of Heat Baths 1169



Since [sin−1(1
2h), sin−1(1

2nph)] … [h/2, p/6] then I2 has the same structure
as I3 and

|I2 | [
C
k

ha − 1/p

Consider I1: changing variables z=sin−1(y) only in the first term and
using again the equivalence relations of functions in the class g2(z), we get

I1=Cha − 1/p 3F
sin − 1(1

2
nph)

sin − 1(1
2
h)

trig(2kz)
z1+a − 1/p dz − F

1
2
nph

1
2
h

trig(2ky)
y1+a − 1/p dz4

+Cha − 1/p F
1
2
nph

1
2
h

g2(y)
y1+a − 1/p trig(2ky) dz

The last term is of the same form as I3; the first two terms differ only in
their ranges of integration, hence

I1=Cha − 1/p 3F
1
2
h

sin − 1(1
2
h)

trig(2kz)
z1+a − 1/p dz+F

sin − 1(1
2
nph)

1
2
nph

trig(2kz)
z1+a − 1/p dz4+I3

The first integral can be estimated directly, using |12h − sin−1(1
2h)| [ Ch3,

:ha − 1/p F
1
2
h

sin − 1(1
2

h)

trig(2kz)
z1+a − 1/p dz : [ Ch3 ha − 1/p

h1+a − 1/p [ Ch2

The second integral can be bounded using integration by parts:

:ha − 1/p F
1
2
nph

sin − 1(1
2
nph)

trig(2kz)
z1+a − 1/p dz : [ C

k
ha − 1/p

Combining I1, I2, and I3,

:F n

1
wk(x) dx : [ C

k
ha − 1/p (61)

We collect (54), (59), (60), and (61), which we substitute into the
Euler–Maclaurin summation formula (51). Since for p < 1

ha=ha − 1/p h1/pk
k

[ C
ha − 1/p

k
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we end up with a simple pointwise estimate:

: C
n

j=1
wk(j) : [ C

ha − 1/p

k
(62)

The corresponding L1
h norm satisfies:

> C
n

j=1
wk(j)>

L1
h

[ Cha − 1/p · h C
N − 1

k=1

1
k

[ Ch1+a − 1/p(1+log N)

Setting a=1 we conclude:

Proposition 15.1. Let 1/2 < p < 1, then for h sufficiently small

||DKn ||L1
h

[ Ch2 − 1/p |log h|

16. CONSISTENCY ANALYSIS: THE FORCING

In this section we evaluate the truncation error associated with the
forcing:

y2=rhFn − Fn

Substituting Fn, given by (9), we obtain

(rhFn)k=Q0+P0
(tk+h)2 − t2

k

2h

+Q0 C
n

j=1

1 − 2
jph

cos[(k+1
2) jph] sin(1

2jph)

j2p

+ C
n

j=1
tj

1 − 2
jph

cos[(k+1
2) jph] sin(1

2jph)

j2p

+ C
n

j=1
gj
5(tk+h)2 − t2

k

2jph
−

2
j3ph

sin[(k+1
2) jph] sin(1

2jph)6

k=0, 1,..., N − 1, from which we subtract Fk
n , given by (20). Using relations

(15) to express the Chebyshev polynomials in terms of trigonometric func-
tions, we can write y2 as the sum of five terms:

y2=D1+D2+D3+D4+D5
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where

Dk
1=−

1
2

hP0

Dk
2=2Q0 C

n

j=1

1
j3ph

{cos[(k+1
2) jph] sin(1

2jph) − cos[(k+1
2) fj] tan(1

2fj)}

Dk
3=2 C

n

j=1
tj

1
j3ph

{cos[(k+1
2) jph] sin(1

2jph) − cos[(k+1
2) fj] tan(1

2fj)}

Dk
4=

h
2

C
n

j=1

gj

jp

Dk
5=2 C

n

j=1
gj

1
j3ph

{sin[(k+1
2) jph] sin(1

2jph) − sin(kfj) tan(1
2fj)}

and fj=2 sin−1(1
2jph).

The first and fourth terms are easy to evaluate:

||D1 ||L2(W; L2
h)=5h C

N − 1

k=1
(Dk

1)261/2

=Ch (63)

and

||D4 ||L2(W; L2
h)=5h C

N − 1

k=1
E(Dk

4)261/2

=5T
h2

4
C
n

j=1

1
j2p
61/2

[ Ch 51+F
.

1

dx
x2p

61/2

=Ch (64)

where we have used the independence of the Gaussian variables gj.
Consider now Dk

2 , which we split as follows,

Dk
2=Q0 C

n

j=1

1
j2p {cos[(k+1

2) jph] − cos[(k+1
2) fj]}

+Q0 C
n

j=1

1
j2p cos[(k+1

2) jph] ·5sin(1
2 jph)

1
2 jph

− 16

+Q0 C
n

j=1

1
j2p cos[(k+1

2) fj] ·51 −
1

`1 − (1
2 jph)2

6
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and identify as being of the form ;n
j=1 wk(j), where wk(j) has the same

structure as in the previous section but with a=2. Thus, we can use the
pointwise estimate (62) to deduce

|Dk
2 | [ C

h2 − 1/p

k

and consequently,

||D2 ||L2(W; L2
h) [ Ch2 − 1/p ·1h C

N − 1

k=1

1
k2
21/2

[ Ch2 − 1/p+1/2 (65)

We next consider D3, which we split in a similar way:

Dk
3= C

n

j=1
tj

1
j2p {cos[(k+1

2) jph] − cos[(k+1
2) fj]}

+ C
n

j=1
tj

1
j2p cos[(k+1

2) jph] ·5sin(1
2 jph)

1
2 jph

− 16

+ C
n

j=1
tj

1
j2p cos[(k+1

2) fj] ·51 −
1

`1 − (1
2 jph)2

6

=Dk
3a+Dk

3b+Dk
3c

Using the fact that the tj are independent and normally distributed,

||D3a ||2
L2(W; L2

h)=h C
N − 1

k=0
C
n

j=1

5 1
j2p {cos[(k+1

2) jph] − cos[(k+1
2) fj]}6

2

[ h C
N − 1

k=0
C
n

j=1

3 1
j2p min[2, 1

4 (k+1
2) j3ph3]4

2

where we have used (53). We can break this summation, say, at n2/3, which
gives

||D3a ||2
L2(W; L2

h) [ h C
N − 1

k=0
C
n2/3

j=1
[1

4 (k+1
2) jph3]2+h C

N − 1

k=0
C
n

j=n2/3+1

1 2
j2p
22

[ Ch4 1F
n2/3

0
x2p dx2+C 1F

.

n2/3

dx
x4p

2

=Ch4n (2/3)(2p+1)+C
1

n (2/3)(4p − 1) [ Ch (4/3)(2 − 1/2p)
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thus

||D3a ||L2(W; L2
h) [ Ch (4/3)(1 − 1/4p)

The terms D3b and D3c are even easier to estimate:

||D3b ||L2(W; L2
h), ||D3c ||L2(W; L2

h) [ 3h C
N − 1

k=1
C
n

j=1

5 1
j2p · Cj2ph26241/2

=C(h4n)1/2 [ Ch2(1 − 1/4p)

Collecting D3a, D3b, and D3c:

||D3 ||L2(W; L2
h) [ Ch (4/3)(1 − 1/4p) (66)

It remains to evaluate D5, which we split again as follows:

Dk
5= C

n

j=1
gj

1
j2p {sin[(k+1

2) jph] − sin(kfj)}

+ C
n

j=1
gj

1
j2p sin[(k+1

2) jph] ·5sin(1
2 jph)

1
2 jph

− 16

+ C
n

j=1
gj

1
j2p sin(kfj) ·51 −

1

`1 − (1
2 jph)2

6

=Dk
5a+Dk

5b+Dk
5c

The terms D5b and D5c are similar to D3b and D3c, hence

||D5b ||L2(W; L2
h), ||D5c ||L2(W; L2

h) [ Ch2(1 − 1/4p)

To evaluate D5a we have to split it once more. Using the trigonometric
identity,

sin[(k+1
2) x]=sin(kx) − 2 sin(kx) sin2(1

4 x)+cos(kx) sin(1
2x)

we get

Dk
5a= C

n

j=1
gj

1
j2p [sin(kjph) − sin(kfj)] − 2 C

n

j=1
gj

1
j2p sin(kjph) sin2(1

4 jph)

+ C
n

j=1
gj

1
j2p cos(kjph) sin(1

2jph)

=Dk
5a1

+Dk
5a2

+Dk
5a3
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Each of these three terms is now straightforward to estimate, yielding

||D5a ||L2(W; L2
h) [ Ch (4/3)(1 − 1/4p)

which together with D5b and D5c implies

||D5 ||L2(W; L2
h) [ Ch (4/3)(1 − 1/4p) (67)

Collecting (63), (64), (65), (66), and (67) we can summarize this section
as follows:

Proposition 16.1. Let 1/2 < p < 1 and T > 0, then there exists a
constant C > 0 such that

||y2 ||L2(W; L2
h)=||rhFn − Fn ||L2(W; L2

h) [ Ch (4/3)(1 − 1/4p)

Note that for 1/2 < p < 1,

2 − 1/p < (4/3)(1 − 1/4p)

hence the total truncation error is dominated by y1.

17. NUMERICAL VALIDATION

We turn now to a numerical validation of our convergence estimates
for Qn and Pn. The numerical data reported in Refs. 6–8 refers to single
realizations of systems as large as n=32000 particles. All our estimates,
however, are for mean convergence, hence we must average over an
ensemble of solutions. This, in turn, limits us to much smaller systems.

The system of Eqs. (4) is linear, which we write as ẋ(t)=Anx(t), with
x=(Q, P, a1,..., an, b1,..., bn); its solution is x(t)=xn(t)=exp(Ant) x(0).
In comparison, we consider a system of m particles, ẋ(t)=Amx(t), m < n,
whose solution is x(t)=xm(t)=exp(Amt) x(0). In the smaller system x(t) is
still a vector of 2n+2 entries; the decoupling of the last 2(n − m) degrees of
freedom from the rest of the system lies in the structure of the matrix Am.
This construction is necessary in order to allow a path-by-path comparison
of the two systems, as required by the probabilistic setting of our analysis.

The difference between the two solutions is

xn(t) − xm(t)=[exp(Ant) − exp(Amt)] x(0) — S(t) x(0)
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hence,

Qn(t) − Qm(t)= C
2n+1

j=1
S1, j(t) xj(0)

Pn(t) − Pm(t)= C
2n+1

j=1
S2, j(t) xj(0)

Finally, since x(0) is a vector of independent normal variables, then
E[xj(0) xk(0)]=dj, k and

E |Qn(t) − Qm(t)|2= C
2n+2

j=1
S2

1, j(t)

E |Pn(t) − Pm(t)|2= C
2n+2

j=1
S2

2, j(t)

For moderate values of n these functions are easy to compute.
In Figs. 1–3 we plot the mean square deviations, E|Qn(t) − Q2n(t)|2 and

E|Pn(t) − P2n(t)|2, as function of n for t=1. The solid lines corresponds to
the predicted asymptotic slopes. Figure 1 is for a value of p above 1, Fig. 2
is for a value of p slightly below 1, and Fig. 3 is for a value of p close to
critical value of p=1/2 where our analysis breaks down.

The first two sets of data show the validity of the predicted conver-
gence rate for system sizes as small as 10–80. Note, however, the less
smooth behavior of the curves that correspond to the momentum coordi-
nate. Figure 3 shows that as p approaches the critical value of 1/2 the
asymptotic scaling does not show up for such small systems.

18. DISCUSSION

The results presented in this paper are divided into two main
categories. (1) Estimates for the rate at which the trajectory of the distin-
guished particle in an n-particle heat bath converges to the infinite heat
bath limit. In the two norms under consideration the rate of convergence
was found to be 1/np − 1/2. (2) Estimates for the rate at which a numerical
solution computed by the symplectic Euler scheme approaches the exact
n-particle solution when the highest frequencies are underresolved, i.e.,
when the step size h is of the order of the inverse of the highest frequency.
In this case, order reduction occurs; for 1/2 < p < 1 the order of the
method is |log h| h2 − 1/p, which in terms of n amounts to a convergence rate
of log n/n2p − 1. Thus, if one uses underresolved computation as an approx-
imation to the infinite system, then the dominant part of the error arises
from the truncation of the heat bath rather than from the underresolution
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Fig. 1. Log–log plot of the mean square deviations, E |Q2n(t) − Qn(t)|2 (left) and
E |P2n(t) − Pn(t)|2 (right), versus n for p=1.2 and t=1. The solid lines have the expected slope
of decay of 2p − 1.

Fig. 2. Same as Fig. 1 for p=0.9.

Fig. 3. Same at Fig. 1 for p=0.55.
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of the high frequencies. In particular, the accuracy cannot be improved by
resorting to higher-order integration schemes.

We compare our estimates with the numerical results of Cano and
Stuart. (8) For p=1 they compare the trajectory Qn of the distinguished
particle for underresolved computations with n=1000 · 2m, m=0, 1, 2, 3,
with an ‘‘exact’’ solution, which is a well-resolved, n=32000 particle solu-
tion. Their measured rate of convergence is roughly 1, which seems con-
tradictory to our predicted convergence rate of p − 1/2=1/2. The reason
for this apparent contradiction is their different choice of random initial
data, which in our notations corresponds to tj ’ N(0, 1), and gj — 0.
Re-examining Proposition 10.3 we see that in this particular case F − Fn

decays at a faster rate:

||F − Fn ||L2(W; L2) [
C

n2p − 1=
C
n

Combining this result with (36) we obtain that ||Q − Qn ||L2(W; L2) [ C/n.
Assuming that our estimates for the convergence rate of underresolved com-
putations can be extrapolated to p=1, we conclude that the expected rate of
convergence is indeed 1, up to a possible logarithmic correction, that is,

||rhQ − Qn ||L2(W; L2
h) [ C

log n
n

Another question of interest is how sensitive are our results to the
specific details of the model. Since our choice of masses and spring con-
stants is artificial, estimates must be robust with respect to slight modifica-
tions in the parameters for the results to be of physical relevance. An
examination of our estimates indicates that the crucial ingredient is the
summability of ;.

j=1 w−2
j . Any mass distribution that satisfies this sum-

mability constraint can be expected to lead to similar estimates. This does
not include, however, the case of random frequencies, which requires a
separate analysis (see ref. 9).

APPENDIX A. ELIMINATION OF THE DISCRETE HEAT

BATH VARIABLES

Consider Eqs. (13). The equations for ak
j , bk

j , can be written as inde-
pendent 2 × 2 systems

R1 − jph

0 1
SRak+1

j

bk+1
j

S=R 1 0

− jph 1
SRak

j

bk
j

S−RQk+1
n − Qk

n

0
S
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easily inverted into an explicit form,

Rak+1
j

bk+1
j

S=A Rak
j

bk
j

S−RQk+1
n − Qk

n

0
S (A.1)

where

A=R1 − j2ph2 jph

− jph 1
S

The eigenvalues of A can be written as

l1=exp(+ıfj), l2=exp(−ıfj)

where

cos fj=1 − 1
2j2ph2, and sin fj=jph `1 − 1

4 j2ph2

and it has been assumed that 1 − 1
2j2ph2 > 0 for all j, i.e., that hnp < `2. The

corresponding eigenvectors can be written as

u1=1 1
+ı exp(− 1

2 ıfj)
2 , u2=1 1

− ı exp(+1
2 ıfj)

2

where

cos(1
2fj)=`1 − 1

4 j2ph2 and sin(1
2fj)=1

2jph

The diagonalizing transformation is

A=TLT−1

where

L=Rexp(ıfj) 0

0 exp(−ıfj)
S T=1 1 1

ı exp(− 1
2 ıfj) − ı exp(1

2 ıfj)
2

Thus, A can be represented as

A=
1

cos(1
2fj)

1cos[(1+1
2) fj] sin fj

− sin fj cos[(1 − 1
2) fj]

2
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and its kth power as

Ak=
1

cos(1
2fj)

1cos[(k+1
2) fj] sin kfj

− sin kfj cos[(k − 1
2) fj]

2 (A.2)

By Duhammel’s principle, the solution to Eq. (A.1) is:

Rak
j

bk
j

S=Ak Rtj

gj

S− C
k

m=1
Ak − mRQm

n − Qm − 1
n

0
S

which upon substitution of (A.2) read,

Rak
j

bk
j

S=
1

cos(1
2fj)

Rcos[(k+1
2) fj] sin kfj

− sin kfj cos[(k − 1
2) fj]

SRtj

gj

S

− C
k

m=1

1
cos(1

2fj)
Rcos[(k − m+1

2) fj] sin[(k − m) fj]

− sin[(k − m) fj] cos[(k − m − 1
2) fj]

S

×RQm
n − Qm − 1

n

0
S

APPENDIX B. THE CHEBYSHEV POLYNOMIALS

The Chebyshev polynomials (24) of the first kind are defined by

Tk(x)=cos(k cos−1 x), − 1 [ x [ 1

They satisfy the recurrence relation

Tk(x)=2x Tk − 1(x) − Tk − 2(x)

and are bounded by |Tk(x)| [ 1. Their derivative satisfies the recurrence
relation

(1 − x2) T −

k(x)=k[Tk − 1(x) − xTk(x)]

The Chebyshev polynomials of the second kind are defined by

Uk − 1(x)=
sin(k cos−1 x)
sin(cos−1 x)

=
1
k

T −

k(x)
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and are bounded by |Uk − 1(x)| [ k. Other useful relations are

cos[(k+1
2) cos−1 x]

cos(1
2 cos−1 x)

=Uk(x) − Uk − 1(x)

sin[(k+1
2) cos−1 x]

sin(1
2 cos−1 x)

=Uk(x)+Uk − 1(x)

APPENDIX C. DERIVATION OF THE DISCRETE VOLTERRA

EQUATION

In this appendix we derive the discrete Volterra equation (18) from the
discrete second-order integro-differential equation (16). The procedure is
analogous to its continuous counterpart, described in Section 4.

Multiply (16) by h and summing up over k from 1 to a, we obtain an
equation of the form

Aa

1=Aa

2+Aa

3+Aa

4+Aa

5 (C.1)

where

Aa

1=h C
a

k=1

Qk+1
n − 2Qk

n+Qk − 1
n

h2

=
(Qa+1

n − Qa

n) − (Q1
n − Q0)

h

=
Qa+1

n − Qa

n

h
− P0+hQ0 − h C

n

j=1
tj

Aa

2=−h C
a

k=1
Qk

n

Aa

3=h C
n

j=1
tj C

a

k=1
[Uk(xj) − Uk − 1(xj)]=h C

n

j=1
tj [Ua(xj) − 1]

Aa

4=h C
n

j=1
gj C

a

k=1
(jph) Uk − 1(xj)= C

n

j=1
gj

1
jp [1 − Ua(xj)+Ua − 1(xj)]
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and

Aa

5=−h C
n

j=1
C

a

k=1
C
k

m=1
[Uk − m(xj) − Uk − m − 1(xj)](Qm

n − Qm − 1
n )

=−h C
n

j=1
C

a

m=1
(Qm

n − Qm − 1
n ) C

a

k=m
[Uk − m(xj) − Uk − m − 1(xj)]

=−h C
n

j=1
C

a

m=1
(Qm

n − Qm − 1
n ) C

a − m

k=0
[Uk(xj) − Uk − 1(xj)]

=−h C
n

j=1
C

a

m=1
(Qm

n − Qm − 1
n ) Ua − m(xj)

where we have used the following identity:

C
a

k=1
Uk − 1(xj)=

1
2(1 − xj)

[1 − Ua(xj)+Ua − 1(xj)]

=
1

j2ph2 [1 − Ua(xj)+Ua − 1(xj)]

Equation (C.1) is a first-order difference equation for Qa+1
n , a=1, 2,....

Note that expression (17) for Q1
n coincides with (C.1) for a=0, thus (C.1)

holds for all a=0, 1, 2,... .
We multiply Eq. (C.1) by h and perform a second summation over a

ranging from 0 to s − 1, s=1, 2,..., N − 1. The resulting equation is of the
form

B s
1=B s

2+B s
3+B s

4+B s
5 (C.2)

where

B s
1= C

s − 1

a=0
hAa

1=Q s
n − Q0 − P0ts+h Q0ts − hts C

n

j=1
tj

B s
2= C

s − 1

a=0
hAa

2=−h C
s

k=1
ts − kQk

n=hQ0ts − h C
s − 1

k=0
ts − kQk

n

B s
3= C

s − 1

a=0
hAa

3= C
n

j=1
tj

1 − Us(xj)+Us − 1(xj)
j2p − hts C

n

j=1
tj

B s
4= C

s − 1

a=0
hAa

4= C
n

j=1
gj
5 ts

jp −
h
jp Us − 1(xj)6
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and

B s
5= C

s − 1

a=0
hAa

5

=−h2 C
n

j=1
C
s − 1

a=0
C

a

m=1
(Qm

n − Qm − 1
n ) Ua − m(xj)

=−h2 C
n

j=1
C
s − 1

m=1
C
s − 1

a=m
(Qm

n − Qm − 1
n ) Ua − m(xj)

=−h2 C
n

j=1
C
s − 1

m=1
(Qm

n − Qm − 1
n ) C

s − m − 1

k=0
Uk(xj)

Using summation by parts,

C
s − 1

m=1
(am − am − 1) C

s − m − 1

k=0
bk=−a0 C

s − 1

k=0
bk+ C

s − 1

k=0
akbs − k − 1

we obtain

B s
5=−h2 C

n

j=1

5− Q0 C
s − 1

k=0
Uk(xj)+ C

s − 1

k=0
Qk

nUs − k − 1(xj)6

=Q0 C
n

j=1

1 − Us(xj)+Us − 1(xj)
j2p − h2 C

n

j=1
C
s − 1

k=0
Qk

nUs − k − 1(xj)

Substituting B s
1–B s

5 into (C2) we obtain the discrete Volterra equation (18).
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